STOR 320.1 Modeling V

Introduction

- Now We Consider
- Categorical Response Variables
- Numerical/Categorical Explanatory Variables
- Focus is on Classification
- Read Chapter 4 in ISLR

Introduction

- Basic Case: Binary Response
- Variable Has Two Possible Outcomes
- Typically, Yes or No Responses to a Question
- Example
- Y = Who Will Win the 2020 Presidential Election?
- Y = Did You Pass Your STOR 320 Class?
- Y = What Factors Influence the Admission into Graduate School?

Scenario

- Question: Are Students Who Get Good Grades Likely to be Admitted to Graduate School?
- $\mathrm{Y}=$ Would the Student be Admitted to a Graduate School?
- X = College GPA
- Why is Linear Regression Inappropriate?

$$
P(\text { Admission } \mid X)=\beta_{0}+\beta_{1} X
$$

Problem Setting

- Bernouilli Random Variable

$$
\begin{gathered}
Y=\left\{\begin{array}{lc}
1 & \text { if Yes } \\
0 & \text { if No }
\end{array}\right. \\
p=E(Y)=P(Y=1)
\end{gathered}
$$

- Sample n Students

$$
\begin{aligned}
\mathrm{Y}^{\prime}=\sum Y_{i} & \sim \operatorname{Binomial}(n, p) \\
\hat{p} & =\frac{\sum y_{i}}{n}
\end{aligned}
$$

Estimated Probability that a Student Would be Admitted to a Graduate School

- Analyze the Effect of X on $p: p=E(Y \mid X) \neq \beta_{0}+\beta_{1} X$

Logit Link

- Modeling the Mean
- Logit Link Function

$$
\log \left(\frac{p}{1-p}\right)=\beta_{0}+\beta_{1} X
$$

- Understanding Odds
- Odds of Admission = 1
- Odds of Admission < 1
- Odds of Admission > 1

Model Construction

- Solving for $\frac{p}{1-p}$

$$
\begin{gathered}
\log \left(\frac{p}{1-p}\right)=\beta_{0}+\beta_{1} X \\
\frac{p}{1-p}=e^{\beta_{0}+\beta_{1} X}
\end{gathered}
$$

Odds of Admission Given the Student's GPA

- Solving for p

$$
\begin{gathered}
p=e^{\beta_{0}+\beta_{1} X}-p e^{\beta_{0}+\beta_{1} X} \\
p\left(1+e^{\beta_{0}+\beta_{1} X}\right)=e^{\beta_{0}+\beta_{1} X} \\
p=\frac{e^{\beta_{0}+\beta_{1} X}}{1+e^{\beta_{0}+\beta_{1} X}}
\end{gathered}
$$

Logistic Regression for Classification

- Recall: $Y= \begin{cases}1 & \text { if Yes } \\ 0 & \text { if No }\end{cases}$
- After Getting Data, We Estimate
- $\hat{\beta}_{0}$
- $\hat{\beta}_{1}$
- $\hat{p}=\frac{e^{\widehat{\beta}_{0}+\hat{\beta}_{1} x}}{1+e^{\hat{\beta}_{0}+\hat{\beta}_{1} x}} \Rightarrow$

Estimated Probability of Admission Given the Student's GPA

- Two Scenarios
- $\hat{p}<0.5 \Rightarrow \hat{Y}=0$
- $\hat{p}>0.5 \mapsto \hat{Y}=1$

Evaluating the LR Model

- Two Methods
- Leave Out Data Intentionally
- Use Cross-Validation
- Positives and Negatives
- True Positive = Predicted an Admission and the Student Got Admitted
- False Positive=Predicted an Admission and the Student Didn’t Get Admitted
- False Negative = Predicted a Student Wouldn’t be Admitted and They Did Get Admitted
- True Negative = Predicted a Student Wouldn't be Admitted and They Didn't Get Admitted

Confusion Matrix

- Confusion Matrix

	Predicted	
Actual	Will be Admitted	Won't be Admitted
Admission	n_{11}	n_{12}
Isn't Admitted	n_{21}	n_{22}

- Sensitivity:

$$
n_{11} /\left(n_{11}+n_{12}\right)
$$

- Specificity:

$$
n_{22} /\left(n_{21}+n_{22}\right)
$$

- False Positive Rate:

$$
n_{21} /\left(n_{21}+n_{22}\right)
$$

- False Negative Rate:

$$
n_{12} /\left(n_{11}+n_{12}\right)
$$

Titanic: Data

- Titanic Survival Data > library(titanic)
- Response Variable

$$
Y=\left\{\begin{array}{lr}
1 & \text { if Survived } \\
0 & \text { if Did Not Survive }
\end{array}\right.
$$

- Explanatory Variables
- Passenger Class
- Sex
- Age
- Siblings/Spouses Aboard
- Parents/Children Aboard
- Passenger Fare
- Port of Embarkation

Titanic: Data

- Titanic Survival Data (Continued)
- Selecting Variables of Interest

> > TRAIN=titanic_train[,c(2,3,5,6,7,8,10,12)]
> $>$ TEST=titanic_test $[, c(2,4,5,6,7,9,11)])$

- Glimpse of Data

```
glimpse (TRAIN)
## Observations: 891
## Variables: 8
## $ Survived <
## S Pclass <int> 3, 1, 3, 1, 3, 3, 1, 3, 3
## $ Age <dbl> 22, 38, 26, 35, 35, NA, 5
## $ SibSp
## $ Parch <int> 0, 0, 0, 0, 0, 0, 0, 1,
## $ Fare <dbl> 7.2500, 71.2833, 7.9250,
## $ Embarked <chr> "S", "C", "S", "S", "S",
```


Visualization: Survival vs. Fare

- Visualizing the Data

Visualization: Survival vs. Age

- Visualizing the Data (Continued)

```
ggplot(TRAIN) + geom_point(aes(x=Age,y=Survived)) + theme_minimal() +
    geom_smooth(aes (x=Age, y=Survived),method="glm",
        method.args=list(family="binomial"),color="deepskyblue1") +
    geom_hline(yintercept=0.5,linetype="dashed",size=2,alpha=0.3)
```


Visualization: Survival vs. Sex

- Visualizing the Data (Continued)

```
TRAIN %>%
    mutate (Sex=factor(Sex)) %>%
    group_by(Sex) %>%
    summarize(Prop.Survived=mean(Survived)) %>%
    ggplot() +
    geom_bar(aes (x=Sex, y=Prop.Survived),
        stat="Identity",fill="deepskyblue1") +
    theme_minimal() +
    theme(text=element_text(size=20))
```


Data Splitting

- Logistic Regression Models
- Split Training Set Up

```
> set.seed(216)
> sample.in=sample(1:dim(TRAIN)[1],
    size=floor(0.8*dim(TRAIN)[1]))
> TRAIN.IN=TRAIN[sample.in,
    c("Survived","Fare","Sex","Age")]
> TRAIN.OUT=TRAIN[-sample.in,
    c("Survived","Fare","Sex","Age")]
```

- Modeling the Probability of Survival Given the Ticket Fare, the Sex of the Passenger, and the Age of the Passenger

Model 1

- Logistic Regression Models (Cont.)
- Including 3-Way Interaction

```
logmod1=glm(Survived~.^3,family="binomial",data=TRAIN.IN)
tidy(logmod1)[,c("term","estimate","p.value")]
## # A tibble: 8 x 3
## term estimate p.value
## <chr> <dbl> <dbl>
## 1 (Intercept) 0.959 0.0719
## 2 Fare -0.0132 0.357
## 3 Sexmale -1.54 0.0182
## 4 Age -0.0362 0.0745
## 5 Fare:Sexmale 0.0180 0.255
## 6 Fare:Age 0.00177 0.00684
## 7 Sexmale:Age -0.000359 0.988
## 8 Fare:Sexmale:Age -0.00168 0.0140
```


Model 2

- Logistic Regression Models (Cont.)
- Only 2-Way Interactions

```
logmod2=glm(Survived~.*.,family="binomial",data=TRAIN.IN)
tidy(logmod2) [,c("term","estimate","p.value")]
## # A tibble: 7 x 3
## term estimate p.value
## <chr> <dbl> <dbl>
## 1 (Intercept) 0.0835 0.846
## 2 Fare 0.0202 0.0459
## 3 Sexmale -0.472 0.355
## 4 Age 0.00244 0.858
## 5 Fare:Sexmale -0.0204 0.0225
## 6 Fare:Age 0.000255 0.188
## 7 Sexmale:Age -0.0456 0.00482
```


Model 3

- Logistic Regression Models (Cont.)
- No Way Interactions

```
logmod3=glm(Survived~., family="binomial",data=TRAIN.IN)
tidy(logmod3) [,c("term","estimate","p.value")]
## # A tibble: 4 x 3
## term estimate p.value
## <chr> <dbl> <dbl>
## 1 (Intercept) 1.03 1.42e- 4
## 2 Fare 0.0117 2.23e- 5
## 3 Sexmale -2.32 6.58e-28
## 4 Age -0.0157 2.87e- 2
```


Predictions

- Getting Predictions

```
TRAIN.OUT2 = TRAIN.OUT %>%
    mutate(p1=predict(logmod1,newdata=TRAIN.OUT,type="response"),
        p2=predict(logmod2,newdata=TRAIN.OUT,type="response"),
        p3=predict(logmod3,newdata=TRAIN.OUT,type="response")) %>%
    select(Survived,p1,p2,p3) %>%
    mutate(S1=ifelse(p1<0.5,0,1),
        S2=ifelse(p2<0.5,0,1),
        S3=ifelse (p3<0.5,0,1))
head(TRAIN. OUT2,15)
```

\#\#	Survived	p1	p2	p3	S1 S2	S3
\#\# 1	1	0.9690919	0.9092749	0.7802745	11	1
\#\# 2	1	0.7754082	0.7600334	0.6058744	11	
\#\# 3	1	0.2080353	0.2054202	0.2124202	00	0
\#\# 4	0	0.6660041	0.6390900	0.7598035	11	
\#\# 5	0	NA	NA	NA	NA NA	
\#\# 6	1	NA	NA	NA	NA NA	
\#\# 7	0	0.5144529	0.6150895	0.6255526	11	1
\#\# 8	0	NA	NA	NA	NA NA	
\#\# 9	0	0.3504463	0.3477779	0.2826244	00	0
\#\# 10	0	0.2084528	0.2141609	0.1755685	00	0
\#\# 11	0	0.3588175	0.3684181	0.2646063	00	0
\#\# 12	0	0.2278485	0.2365545	0.1841222	00	0
\#\# 13	0	0.1588185	0.1560858	0.1590190	00	
\#\# 14	1	0.2135621	0.2103355	0.2445736	00	
\#\# 15	1	NA	NA	NA	NA NA	NA

Predictions

- Getting Predictions

TRAIN . OUT3=na. omit (TRAIN. OUT2) head (TRAIN. OUT3,20)							
\#\#	Survived	p1	p2	p3	S1	S2	
\#\# 1	1	0.9690919	0.9092749	0.7802745		1	1
\#\# 2	1	0.7754082	0.7600334	0.6058744		1	
\#\# 3	1	0.2080353	0.2054202	0.2124202		0	0
\#\# 4	0	0.6660041	0.6390900	0.7598035		1	1
\#\# 7	0	0.5144529	0.6150895	0.6255526		1	1
\#\# 9	0	0.3504463	0.3477779	0.2826244		0	0
\#\# 10	0	0.2084528	0.2141609	0.1755685			0

mean (TRAIN. OUT $3 \$ S 1==$ TRAIN. OUT $3 \$ S 2$)
\#\# [1] 0.993007
mean (TRAIN. OUT3\$S2==TRAIN. OUT3\$S3)
\#\# [1] 1

What Do You Notice About the Predictions?

Predictions

- Getting Predictions

TRAIN. OUT4 $=$ TRAIN. OUT3 $\%>\%$ select ($-\mathrm{p} 2,-\mathrm{S} 2$) head (TRAIN. OUT4, 8)					
\#\#	Survived	p1	p3	S1	S3
\#\# 1	1	0.9690919	0.7802745	1	
\#\# 2	1	0.7754082	0.6058744	1	1
\#\# 3	1	0.2080353	0.2124202	0	0
\#\# 4	0	0.6660041	0.7598035	1	1
\#\# 7	0	0.5144529	0.6255526	1	1
\#\# 9	0	0.3504463	0.2826244	0	0
\#\# 10	0	0.2084528	0.1755685	0	0
\#\# 11		0.3588175	0.2646063	0	0

1
Where Do You See Error?

Evaluation

- Evaluating Results
- Helpful Modifications

```
TRAIN.OUT5 = TRAIN.OUT4 %>%
    select(-p1,-p3) %>%
    mutate(Survived=factor(Survived),S1=factor(S1),S3=factor(S3)) %>%
    mutate(Survived=fct_recode(Survived, "Survived"="1","Died"="0"),
        S1=fct recode(S1,"Will Survive"="1","Will Die"="0"),
        S3=fct_recode(S3,"Will Survive"="1","Will Die"="0")) %>%
    mutate(Survived=factor(Survived,levels=c("Survived","Died")),
        S1=factor(S1,levels=c("Will Survive","Will Die")),
        S3=factor(S3,levels=c("Will Survive","Will Die")))
head(TRAIN. OUT5)
## Survived S1 S3
## 1 Survived Will Survive Will Survive
## 2 Survived Will Survive Will Survive
## 3 Survived Will Die Will Die
## 4 Died Will Survive Will Survive
## 5 Died Will Survive Will Survive
## 6 Died Will Die Will Die
```


Evaluation: Confusion Matrix

- Evaluating Results (Continued)
- Confusion Matrix
- Including 3-Way Interactions

```
RESULTS1=table(TRAIN. OUT5$Survived,TRAIN.OUT5$S1) %>%
    prop.table()
print(RESULTS1)
##
## Will Survive Will Die
## Survived 0.32867133 0.13986014
## Died 0.07692308 0.45454545
```

- No Way Interactions

```
RESULTS3=table (TRAIN.OUT5$Survived,TRAIN.OUT5$S3) %>%
    prop.table()
print(RESULTS3)
##
## Will Survive Will Die
## Survived 0.33566434 0.13286713
## Died 0.07692308 0.45454545
```


Evaluation: Rates

- Evaluating Results (Continued)
- Error Statistics

```
ERROR.RESULTS = tibble(
                        Model=c("3 Way", "No Way"),
                        Sensitivity=c (RESULTS1[1,1]/sum(RESULTS1[1,]),RESULTS3[1,1]/sum(RESULTS3[1,])),
                        Specificity=c (RESULTS1[2,2]/sum(RESULTS1[2,]),RESULTS3[2,2]/sum(RESULTS3[2,])),
                        FPR=c (RESULTS1 [2,1]/sum (RESULTS1 [2,]),RESULTS3 [2,1]/sum (RESULTS3[2,])),
                        FNR=c (RESULTS1[1,2]/sum(RESULTS1[1,]),RESULTS3[1,2]/sum(RESULTS3[1,]))
)
print(ERROR.RESULTS)
```

- Code
- Results

Model	Sensitivity	Specificity	FPR	FNR
<chr>	<dbl>	<dbl>	<dbl>	<dbl>
3 Way	0.701	0.855	0.145	0.299
No Way	0.716	0.855	0.145	0.284

