STOR 320.1 Modeling III

Introduction

- Instructions
 - Download Tutorial 11 Zip
 - Unzip Folder
 - Required Packages
 - library(modelr)
 - library(tidyverse)
 - library(purrr)
 - library(broom)
 - Open .Rmd File and Knit

Discussion

- Problems With Current Approach
 - Same Model For All Locations
 - Not All Locations Used in Train
 - Not All Locations Used in Test
 - Residuals Indicate that Model Can Be Improved
 - Not Helpful for Forecasting
 - Ambiguous Results: No Clear Winner

- Previously
 - Split Data in Train and Test
 - Train (28 Rivers)
 - Test (3 Rivers)
 - Purpose
 - Estimate Out-of-Sample Error
 - Pick Best Model Based on This Estimate
 - Combat Overfitting
 - Robustification
 - Goal: Find the Simplest Model that Adequately
 Predicts

- Current Issues
 - Decision on Final Model Heavily Influenced by the Test Data
 - Loss of Data in Model Fitting
 - Not Appropriate in Small Datasets
- Cross Validation Idea
 - Split Data Into Many Groups
 - Each Group Acts as a Test Set
 - All Data is Used in Both Model Fitting and Model Testing
 - Help: Chapter 5 (ISLR)

- Tidyverse Concepts
 - Chapter 20 (25 online R4DS)
 - List-Columns
 - Columns in Data Frames or Tibbles Can Be Lists
 - What this Means
 - Column of Tables
 - Column of Models
 - Column of Functions
 - Functions
 - nest(): Converts Rows of a Data Frame into a List
 - unnest(): What do You Think It Does?

- Run Chunk 1
 - Observe the Output
 - Column of Tibbles
- Run Chunk 2
 - Imagine We Wanted to Split
 - Test: Data For Location 103
 - Train: All Remaining Data
 - Use of filter() and unnest()
 - First Glimpse -> 365 x 8
 - Second Glimpse -> 10,972 x 8

- Chunk 3
 - Run Each Line
 - What is Happening?
 - Use View() on DATA2 and Scan Through the Data
 - What do You Notice?
- Chunk 4
 - Create a Loop that Repeats this Process for Each Location
 - Each Location Is a Test Set
 - Predictions Saved are All Out-of-Sample
 - Run Chunk 4 to Test Your Code

• Chunk 4 (Continued)

```
DATA2=DATA
DATA2$linpred=NA
for(k in unique(DATA2$L)){
TEST = NEST.DATA %>% filter(L==k) %>%
unnest()
TRAIN = NEST.DATA %>% filter(L!=k) %>%
unnest()
```

```
linmod=Im(W~A, data=TRAIN)
linmodpred=predict(linmod,newdata=TEST)
```

DATA2\$linpred[which(DATA2\$L==k)]=linmodpred

- Chunk 5
 - In Our Data, We Have:
 - Actual Water Temperatures
 - Out-of-Sample Predicted Water Temperatures
 - Create RMSE.func() With Two Arguments
 - actual= vector of actual water temperatures
 - predict=vector of predicted water temperatures
 - Use This Function on the Two Columns in DATA2 for RMSE
 - actual=W
 - predict=linpred

• Chunk 5 (Continued)

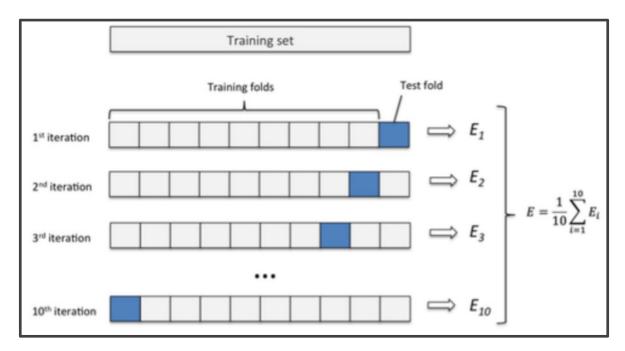
```
RMSE.func = function(actual,predict){
    mse=mean((actual-predict)^2,na.rm=T)
    rmse=sqrt(mse)
    return(rmse)
}
RMSE.func(actual=DATA2$W,
    predict=DATA2$linpred)
```


RMSE.func(actual=DATA2\$W,predict=DATA2\$linpred)
] 3.147084

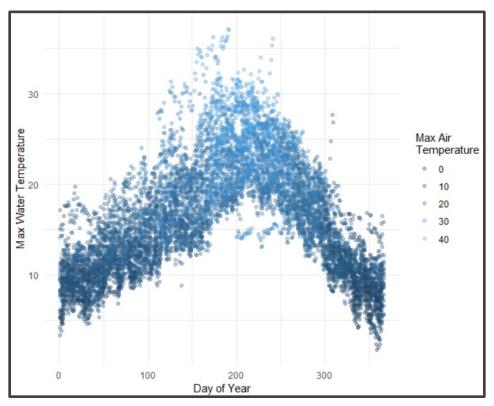
Intermission

- Current
 - Using the Natural Grouping of Data for 31-Fold Cross Validation
 - Only Fit One Linear Model
 - Should Use Cross-Validation for Multiple Different Models and Compare Cross-Validated RMSE
- Next
 - Randomly Assign Observations to *K*-Folds
 - CV Function: crossv_kfold(*K*)

- Overview (*K*=10)
 - Randomly Split Observations Into K Groups
 - Each Fold Acts as a Test Set
 - If Each Fold Contains Approximately the Same # of Observations,



- Run Chunk 1
 - Variables (Julian Day)
 - Clear Non-Linear Relationship



General Polynomial Model

$$W = a + \sum_{i=1}^{I} b_i A^i + \sum_{j=1}^{J} c_j D^j + \varepsilon$$

- Perform K-Fold CV to Estimate Out-of-Sample RMSE for Choices of *I=4* and *J=3*
- Ultimate Goal is To Select Best *I* and *J*

- Run Chunk 2
 - Fit Model with *I*=4 and *J*=3
 - Functions from broom Package
 - tidy()
 - glance()

Used to Preview Models

<pre>tidy(polymodel) A tibble: 8 x 5 term</pre>	<pre><db7> 16.2 328. 49.0 2.85 -3.62 46.0</db7></pre>	0.027 <u>3</u> 4.36 2.80 2.78 2.72 2.78	<pre><db7> 595. 75.3 17.5 1.02 -1.33 16.6</db7></pre>	<pre><db7> 0. 0. 1.62e-67 3.06e- 1 1.84e- 1 8.85e-61</db7></pre>		
<pre>poly(JULIAN_DAY, 3)2 poly(JULIAN_DAY, 3)3</pre>	-226. -59.3	4.31 2.89	-52.5	0. 8.66e-92		
glance(polymodel) A tibble: 1 x 11 r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC <db1> <db1> <db1> 0.797 0.797 2.71 5525. 0 8 -23804. 47626. 47691.</db1></db1></db1>						

- Run Chunk 3
 - Divide Data into 10 Folds
 - Use crossv_kfold() Function
 - Variables are Lists of Train and Test Sets
 - For Each Row, We Want to Fit on Train and Predict on Test

head(DATA3) A tibble: 6 x 3							
train		test		.id			
<7ist	t>	<715	t>	<chr></chr>			
<s3:< th=""><td>resample></td><td><s3:< td=""><td>resample></td><td>01</td></s3:<></td></s3:<>	resample>	<s3:< td=""><td>resample></td><td>01</td></s3:<>	resample>	01			
<s3:< th=""><th>resample></th><th><s3:< th=""><th>resample></th><th>02</th></s3:<></th></s3:<>	resample>	<s3:< th=""><th>resample></th><th>02</th></s3:<>	resample>	02			
<s3:< th=""><th>resample></th><th><s3:< th=""><th>resample></th><th>03</th></s3:<></th></s3:<>	resample>	<s3:< th=""><th>resample></th><th>03</th></s3:<>	resample>	03			
<s3:< th=""><th>resample></th><th><s3:< th=""><th>resample></th><th>04</th></s3:<></th></s3:<>	resample>	<s3:< th=""><th>resample></th><th>04</th></s3:<>	resample>	04			
<s3:< th=""><td>resample></td><td><s3:< td=""><td>resample></td><td>05</td></s3:<></td></s3:<>	resample>	<s3:< td=""><td>resample></td><td>05</td></s3:<>	resample>	05			
<s3:< th=""><td>resample></td><td><s3:< td=""><td>resample></td><td>06</td></s3:<></td></s3:<>	resample>	<s3:< td=""><td>resample></td><td>06</td></s3:<>	resample>	06			

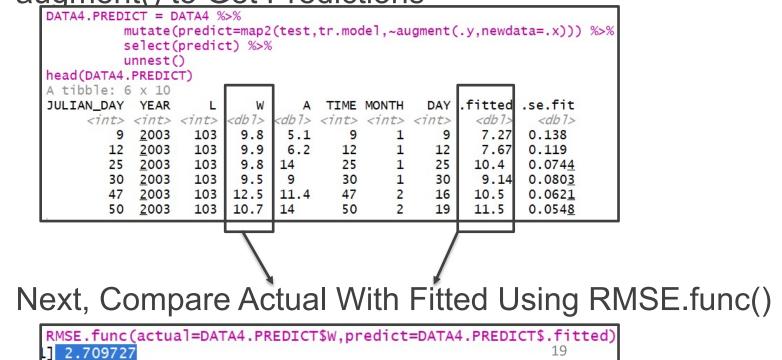
- Run Chunk 4
 - Create Function to Fit Models
 - Apply Function to All Train Sets Using purrr::map() Function

```
DATA4=DATA3 %>%
      mutate(tr.model=map(train,train.model.func,i=i,j=j))
head(DATA4)
A tibble: 6 x 4
           test
                         .id
                                 tr.model
train
         st>
                         <chr> <list>
<list>
<S3: resample> <S3: resample> 01 <S3: lm>
<S3: resample> <S3: resample> 02 <S3: lm>
<S3: resample> <S3: resample> 03 <S3: lm>
<S3: resample> <S3: resample> 04 <S3: lm>
<S3: resample> <S3: resample> 05 <S3: lm>
<S3: resample> <S3: resample> 06
                                  <S3: 1m>
```

- Functions from purrr Package
 - map() Loop Over Train
 - map2() Loop Over Fitted Models and Test

• Run Chunk 5

- purrr::map2() Iterates Function Over Two Arguments
- For Every Test Set and Trained Model, We Use
 augment() to Get Predictions



Look Ahead

- What We Have Done
 - Specify I and J
 - Use 10-Fold Cross Validation to Estimate Out-of-Sample RMSE
- How We Should Use This
 - Choose Max *I* and Max *J* (Example: 10)
 - Initiate 10 x 10 Matrix of NA
 - Loop Through All *i* and *j* to Capture Out-of-Sample RMSE
 - Create a Tile Plot that Visualizes the RMSE for Each Combination of *i* and *j*
 - Choose Best *i* and *j*