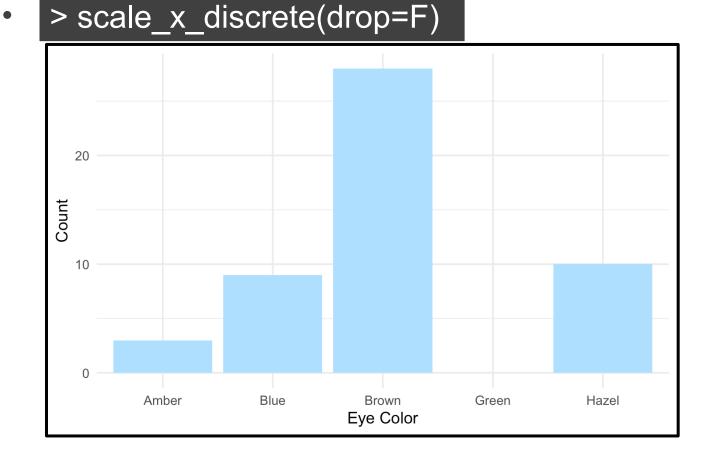
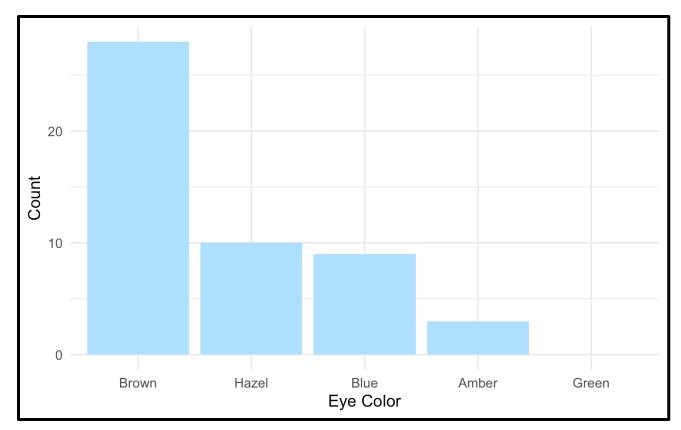
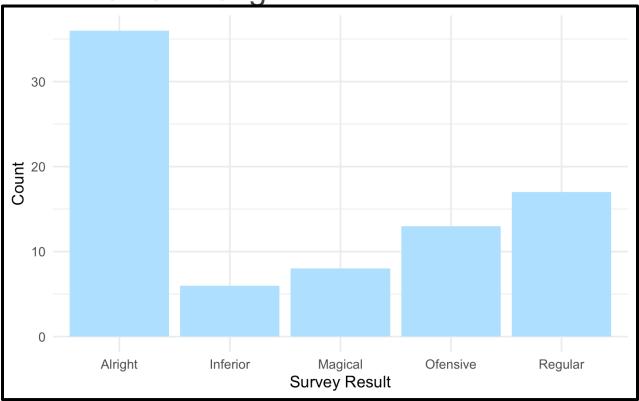

STOR 320.1 Factors

Introduction

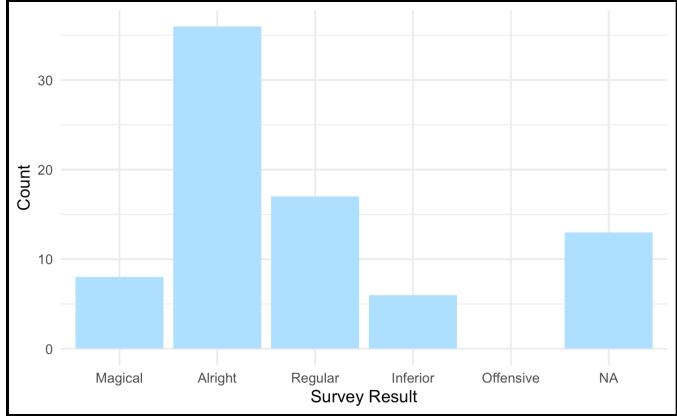

- Read Chapter 12 (15 on-line)
- Additional Package
 - > library(forcats)
 - Part of the tidyverse
- For Variables with,
 - Fixed Set of Values
 - Known Set of Values
- Factors Are on a New Level


- Eye Color Distribution
 - Randomly Sample 50 People
 - Distribution via Bar Plot
 - How to Make More Informative?

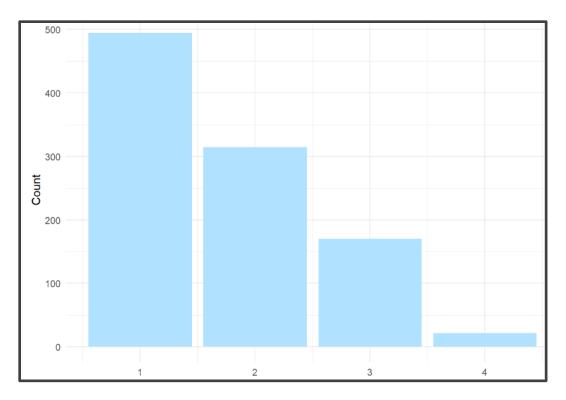
- Eye Color Distribution (Cont.)
 - Display Eye Colors Absent From Sample

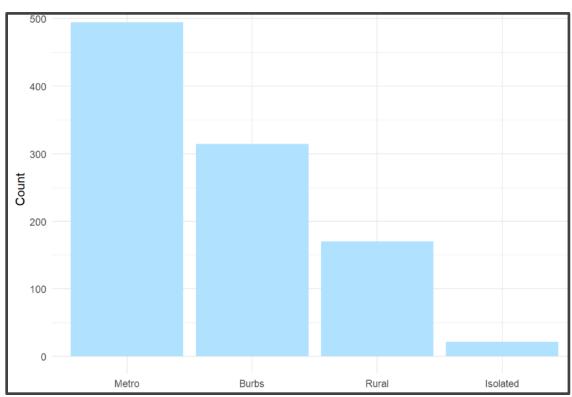


- Eye Color Distribution (Cont.)
 - Display in order



- Survey Results
 - How Would You Describe Dr. Example's Teaching?
 - Magical
 - Alright
 - Regular
 - Inferior
 - Offensive
 - Class of 80 Students Answer End-of-the-Year Survey


- Survey Results (Cont.)
 - Distribution of Results
 - What is Wrong?


- Survey Results (Cont.)
 - Ordinal Categorical Variable

- Urbanicity
 - Classification {1,2,3,4}
 - Sample 1000 Households and Record Their Urbanicity
 - What Would Make this Better?

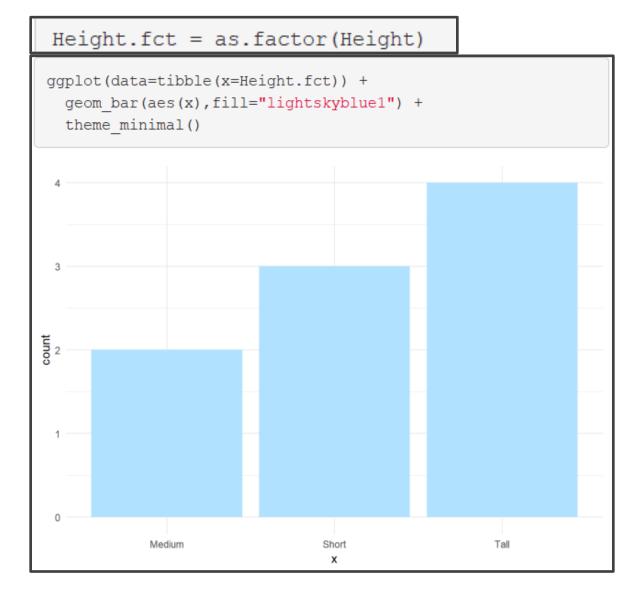
- Urbanicity
 - Data Dictionary
 - 1 = Metropolitan
 - 2 = Burbs
 - 3 = Rural
 - 4 = Isolated

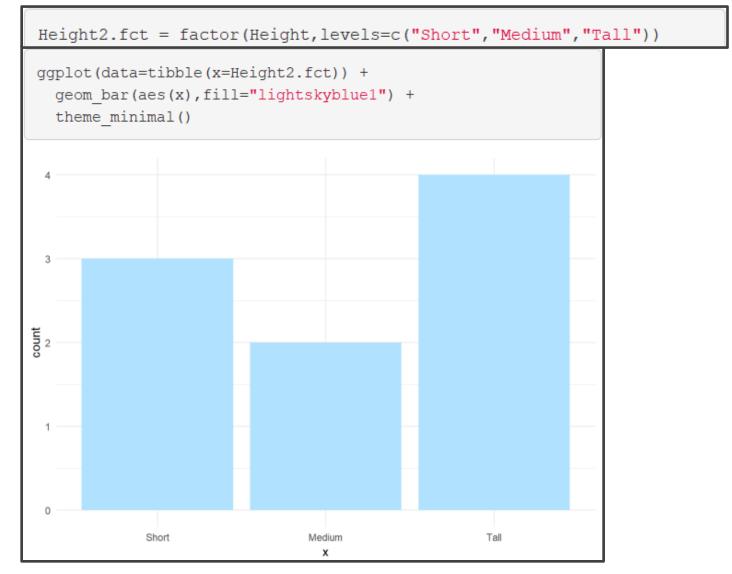
Factor Variable Architecture

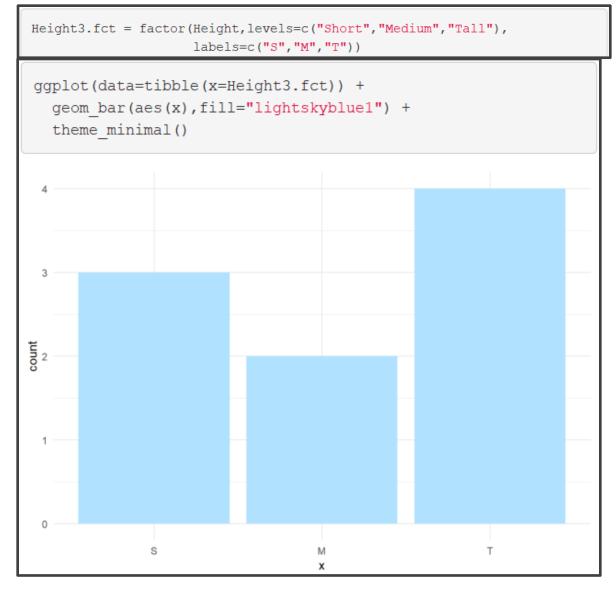
Factor Variables
 Have Levels

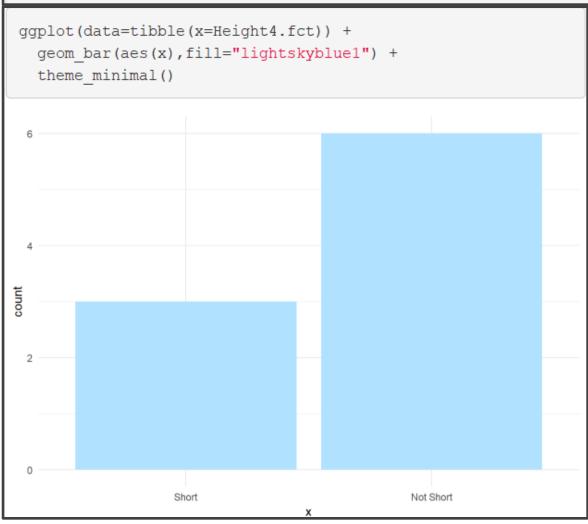
<pre>Height = c("Tall", "Short", "Tall", "Tall", "Short", "Medium",</pre>
[1] "Tall" "Short" "Tall" "Tall" "Short" "Medium" "Short" "Medium" ## [9] "Tall"
levels(Height)
NULL
print(Height.fct)
[1] Tall Short Tall Tall Short Medium Short Medium Tall ## Levels: Medium Short Tall
levels(Height.fct)
##[1] "Medium" "Short" "Tall"
Default: Alphabetical

Factor: Level Order


• Level Order May Be Specified


```
Height2.fct = factor(Height, levels=c("Short", "Medium", "Tall"))
levels(Height2.fct)
## [1] "Short" "Medium" "Tall"
print(Height2.fct)
## [1] Tall Short Tall Tall Short Medium Short Medium Tall
## Levels: Short Medium Tall
```


Factor: Label


Levels May Be
 Labeled

<pre>Height3.fct = factor(Height, levels=c("Short", "Medium", "Tall"),</pre>						
levels(Height3.fct)						
## [1] "S" "M" "T"						
print(Height3.fct)						
## [1] T S T T S M S M T ## Levels: S M T						
<pre>Height4.fct = factor(Height,levels=c("Short","Medium","Tall"),</pre>						
## [1] "Short" "Not Short"						
print(Height4.fct)						
## [1] Not Short Short Not Short Not Short Short Short Short Short ## [8] Not Short Not Short						
## Levels: Short Not Short						

General Social Survey

University of Chicago

About the GSS

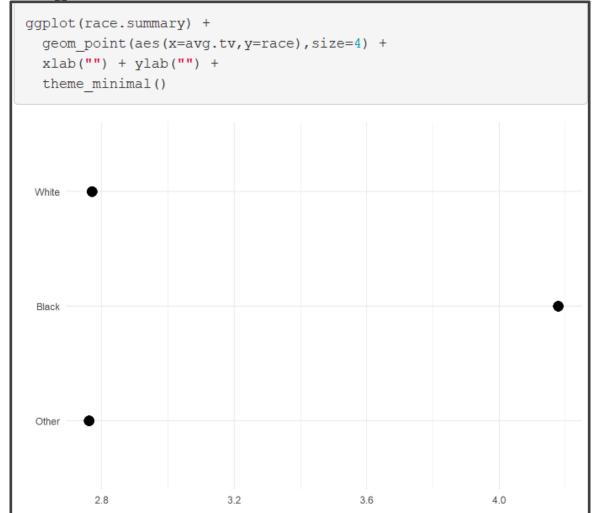
The General Social Survey

Since 1972, the General Social Survey (GSS) has provided politicians, policymakers, and scholars with a clear and unbiased perspective on what Americans think and feel about such issues as national spending priorities, crime and punishment, intergroup relations, and confidence in institutions.

About the GSS

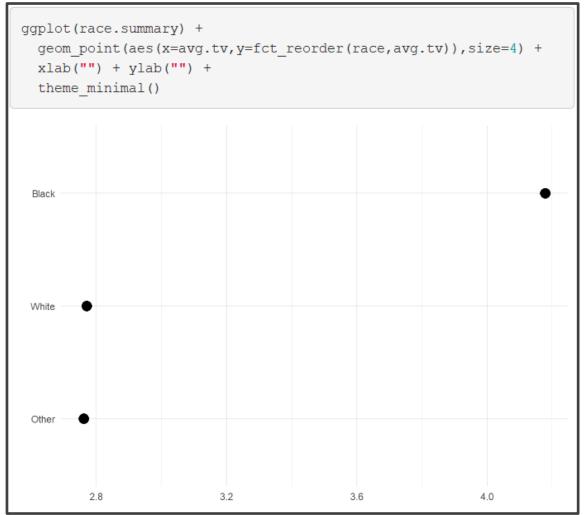
General Social Survey

Social=gss_cat glimpse(Social)

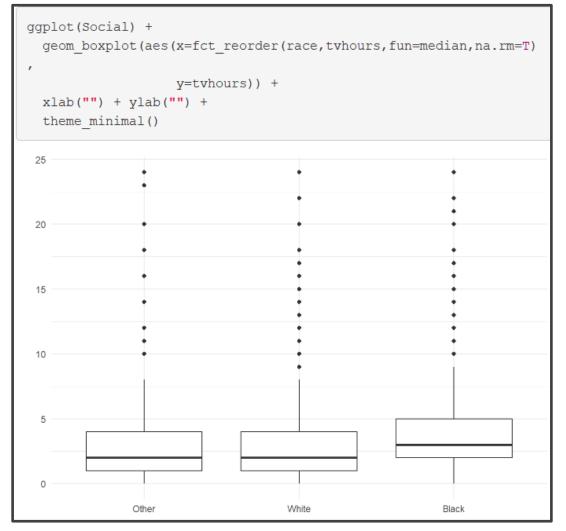

- Sample Provided in gss_cat
- Factor Variables Included
 - Marital
 - Race
 - Income Range
 - Political Party
 - Religion
 - Denomination

##	## Observations: 21,483							
ππ	Observatio	013. 21,403						
##	## Variables: 9							
##	\$ year	<int> 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000,</int>						
##	\$ marital	<fct> Never married, Divorced, Widowed, Never married, Divor</fct>						
##	\$ age	<int> 26, 48, 67, 39, 25, 25, 36, 44, 44, 47, 53, 52, 52, 51</int>						
##	\$ race	<fct> White, White, White, White, White, White, White, White</fct>						
##	\$ rincome	<fct> \$8000 to 9999, \$8000 to 9999, Not applicable, Not appl</fct>						
##	\$ partyid	<fct> Ind,near rep, Not str republican, Independent, Ind,nea</fct>						
##	\$ relig	<fct> Protestant, Protestant, Protestant, Orthodox-christian</fct>						
##	\$ denom	<fct> Southern baptist, Baptist-dk which, No denomination, N</fct>						
##	\$ tvhours	<int> 12, NA, 2, 4, 1, NA, 3, NA, 0, 3, 2, NA, 1, NA, 1, 7,</int>						

• Summary by Race


<pre>race.summary = Social %>% group_by(race) %>% summarize(n=n(), avg.age=mean(age,na.rm=T), avg.tv=mean(tvhours,na.rm=T)</pre>							
) race.summary							
<pre>## # A tibble: 3 x ## race n av ## <fct> <int> ## 1 Other 1959 ## 2 Black 3129 ## 3 White 16395</int></fct></pre>	<pre>/g.age avg.tv <dbl> <dbl> 39.5 2.76 43.9 4.18</dbl></dbl></pre>						
levels(Social\$race)							
## [1] "Other"	"Black"	"White"	"Not applicable"				
levels(race.summary\$race)							
## [1] "Other"	"Black"	"White"	"Not applicable"				

Comparing TV Hours



- fct_reorder()
 - f = Factor Variable
 - x = Numeric Vector
 - fun = Optional Function If Multiple Values of x for Each Value of f (Default: Median)

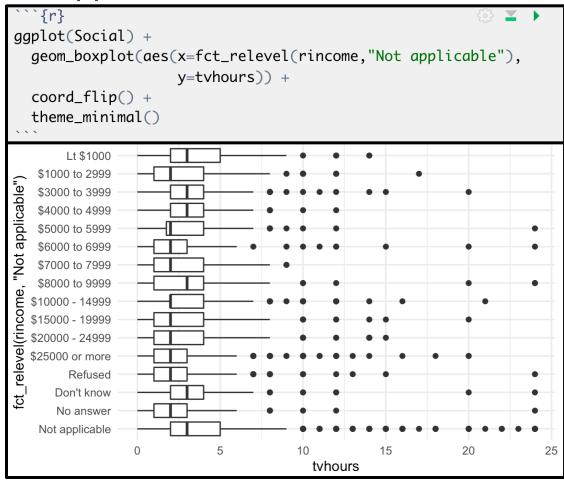
• Example 1: Reorder

• Example 2: Reorder

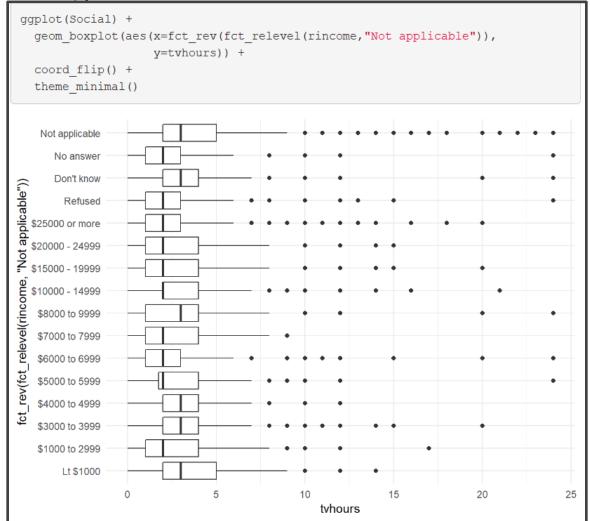
Useful Functions

- Other Useful Functions
 - fct_relevel() = Specify Variable and the Specific Levels You Want in The Front
 - fct_rev() = Specify Variable and Reverses the Level Order
 - fct_infreq() = Order Levels Based on Increasing Frequency
- Combine Functions as Necessary

Types of Ordering


- Different Types of Ordering
 - Nominal = "Arbitrary"
 - Ordinal = "Principled"
- Example: Race vs Income
 - Race Levels are Arbitrary
 - Income Levels are Principled

<pre>head(Social[,c("race", "rincome")])</pre>							
<pre>## # A tibble: 6 x 2 ## race rincome ## <fct> <fct> ## 1 White \$8000 to 9999 ## 2 White \$8000 to 9999 ## 3 White Not applicable ## 4 White Not applicable ## 5 White Not applicable ## 6 White \$20000 - 24999</fct></fct></pre>							
<pre>str(Social[,c("race", "rincome")])</pre>							
<pre>## Classes 'tbl_df', 'tbl' and 'data.frame': 21483 obs. of 2 variables: ## \$ race : Factor w/ 4 levels "Other","Black",: 3 3 3 3 3 3 3 3 3 3 3 ## \$ rincome: Factor w/ 16 levels "No answer","Don't know",: 8 8 16 16 16 5 4 9 4 4</pre>							
levels(Social\$race)							
## [1] "Other" "Black" "White" "Not applicable"							
levels(Social\$rincome)							
<pre>## [1] "No answer" "Don't know" "Refused" "\$25000 or more" ## [5] "\$20000 - 24999" "\$15000 - 19999" "\$10000 - 14999" "\$8000 to 9999" ## [9] "\$7000 to 7999" "\$6000 to 6999" "\$5000 to 5999" "\$4000 to 4999" ## [13] "\$3000 to 3999" "\$1000 to 2999" "Lt \$1000" "Not applicable"</pre>							


Original Boxplot

g	gplot(Social geom_boxplo coord_flip theme_minin	ot(aes(x=rin () +	come,y=tvh	ours)) +				
	Not applicable							•••
	Lt \$1000							
	\$1000 to 2999			- • •	•	•		
	\$3000 to 3999				• •	•	•	
	\$4000 to 4999			• •	•			
	\$5000 to 5999]	• • •	•			•
	\$6000 to 6999		•	• • •	•	•	•	•
me	\$7000 to 7999]	•				
rincome	\$8000 to 9999]	- •	•		•	
	\$10000 - 14999]	• • •	• •	•	•	
	\$15000 - 19999]	- •	• •	•	•	
	\$20000 - 24999]	- •	• •	•		
	\$25000 or more		•	• • • •	• • •	•	• •	
	Refused		•	• •	• •	•		•
	Don't know			• •	•		•	•
	No answer			• •	•			•
		0	5	10	haura	15	20	25
	tvhours							

• Pull `Not applicable` to the front

Level <u>Change + Rev</u>

Modifying Factor Levels

- Purpose for Modifying Levels
 - Abbreviate or Better Names
 - Collapse Unimportant Levels
 - Group Categories
- Useful Functions
 - fct_recode() = Rename Levels
 - fct_collapse() = Collapse Levels
 - fct_lump() = Create Subgroups

Modifying Factor Levels

Marital Counts

```
Marriage = Social %>%
            count(marital) %>%
            mutate(prop=n/sum(n))
print(Marriage)
## # A tibble: 6 x 3
##
   marital
                    n
                         prop
##
   <fct> <int> <dbl>
  1 No answer 17 0.000791
    Never married 5416 0.252
  3 Separated
             743 0.0346
##
  4 Divorced 3383 0.157
    Widowed
              1807 0.0841
  5
  6 Married 10117 0.471
```

Recode Levels

• Example 1: Recode Levels

```
Marriage2 = Social %>%
            mutate(marital2=fct recode(marital,
                   "Unknown" = "No answer",
                   "Single" = "Never married"
            )) 응>응
            count(marital, marital2) %>%
            mutate(prop=n/sum(n))
print(Marriage2)
## # A tibble: 6 x 4
  marital marital2
##
                           n
                                prop
   <fct> <fct> <fct> <dbl>
##
  1 No answer Unknown 17 0.000791
  2 Never married Single 5416 0.252
  3 Separated
                Separated 743 0.0346
##
  4 Divorced Divorced 3383 0.157
  5 Widowed
               Widowed 1807 0.0841
                Married
  6 Married
                         10117 0.471
```

Collapse Levels

• Example 2: Collapse Levels

lev	levels(Social\$marital)							
##	## [1] "No answer" "Never married" "Separated" "Divorced"							
##	[5]	"Widowed"	"Marı	ried"				
Mai	Marriage3 = Social %>%							
	mutate(marital2=fct collapse(marital,							
			Alone	= leve	- els(ma	rital)[c(2,4,	,5)] ,	
			Togeth	ner = 1	levels	(marital)[c(5)] ,	
			Confus	sed =]	levels	(marital)[c(1	L,3)]	
)) 응:	>%					
	group_by(marital,marital2) %>%							
	summarize(n=n()) %>%							
	ungroup() %>%							
	<pre>mutate(prop=n/sum(n))</pre>							
pr	print(Marriage3)							
##	# A	tibble: 6 x	4					
##	m	arital	marital2	n	р	rop		
##	<	fct>	<fct></fct>	<int></int>	<d< th=""><th>bl></th><th></th></d<>	bl>		
##	1 N	o answer	Confused	17	0.000	791		
##	2 N	ever married	Alone	5416	0.252			
##	3 S	eparated	Confused	743	0.034	6		
##	4 D	ivorced	Alone	3383	0.157			
##	5 W	idowed	Alone	1807	0.084	1		
##	6 M	arried	Together	10117	0.471			

Lumping Levels

• Example 3: Lumping Levels

```
Marriage4 = Social %>%
           mutate(marital2=fct lump(marital)) %>%
           count(marital,marital2) %>%
           mutate(prop=n/sum(n))
print(Marriage4)
## # A tibble: 6 x 4
    marital marital2
##
                               n
                                  prop
          <fct>
##
    <fct>
                        <int>
                                 <dbl>
## 1 No answer Other
                        17 0.000791
## 2 Never married Never married 5416 0.252
 3 Separated Other 743 0.0346
## 4 Divorced Divorced 3383 0.157
            Other
## 5 Widowed
                         1807 0.0841
              Married
## 6 Married
                           10117 0.471
```

Lumping Levels

• Example 3: Lumping Levels

```
Marriage5 = Social %>%
            mutate(marital2=fct lump(marital,2)) %>%
            count(marital, marital2) %>%
            mutate(prop=n/sum(n))
print(Marriage5)
## # A tibble: 6 x 4
##
    marital marital2
                                n
                                    prop
           <fct>
    <fct>
                           <int>
                                  <dbl>
##
  1 No answer Other
                               17 0.000791
  2 Never married Never married 5416 0.252
  3 Separated Other
                          743 0.0346
  4 Divorced Other
                             3383 0.157
## 5 Widowed
             Other
                             1807 0.0841
## 6 Married
               Married
                             10117 0.471
```