STOR 320.1 Web Scraping

- Relying on Downloadable CSV's Puts You at a Disadvantage
- Majority of Data Is Found Online
- Negative: Online Data is Unstructured in HTML Format
- Positive: Online Data is Often Updated, Relevant, & Untapped

• Example 1: Population of states

Population of states, territories, divisions and regions									
State/federal district/territory/ division/region	Rank 🕈	2019 population ÷	Rank +	2010 population \$	Rank \$	2000 population \$	Rank \$	2000- 2010 ¢ change	Geographic sort
Massachusetts	15	6,892,503	14	6,547,629	13	6,349,097	43	3.1%	NEng
8 Connecticut	29	3,565,287	29	3,574,097	29	3,405,565	35	4.9%	NEng
New Hampshire	41	1,359,711	42	1,316,470	41	1,235,786	32	6.5%	NEng
s Maine	42	1,344,212	41	1,328,361	40	1,274,923	39	4.2%	NEng
(1) Rhode Island	44	1,059,361	43	1,052,567	43	1,048,319	49	0.4%	NEng
e Vermont	49	623,989	49	625,741	49	608,827	44	2.8%	NEng
New England	9	14,845,063	9	14,444,865	9	13,922,517	7	3.8%	NEast
New York	4	19,453,561	3	19,378,102	3	18,976,457	46	2.1%	MAtl
Pennsylvania	5	12,801,989	6	12,702,379	6	12,281,054	41	3.4%	MAtl
New Jersey	11	8,882,190	11	8,791,894	9	8,414,350	37	4.5%	MAtl
Mid-Atlantic	4	41,137,740	4	40,872,375	4	39,671,861	8	3.0%	NEast
Northeast	4	55,982,803	4	55,317,240	4	53,594,378	4	3.2%	USA
🔀 Florida	3	21,477,737	4	18,801,310	4	15,982,378	8	17.6%	SAtl
Georgia	8	10,617,423	9	9,687,653	10	8,186,453	7	18.3%	SAtl
North Carolina	9	10,488,084	10	9,535,483	11	8,049,313	6	18.5%	SAtl
💿 Virginia	12	8,535,519	12	8,001,024	12	7,078,515	16	13.0%	SAtl
Maryland	19	6,045,680	19	5,773,552	19	5,296,486	23	9.0%	SAtl
South Carolina	23	5,148,714	24	4,625,364	26	4,012,012	10	15.3%	SAtl
💌 West Virginia	38	1,792,147	37	1,852,994	37	1,808,344	45	2.5%	SAtl

• Example 2: Blood Pressure Chart

What Shou	Vhat Should Blood Pressure be According to Age?									
Approx.	BP Accor	ding to A	ge Chart							
Age	Low		Normal		Elevated		Stage 1 Hypertension		Stage 2 Hypertensio	on
	S	D	S	D	S	D	S	D	S	D
17- 1 9	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
20-24	< 90	< 60	< 120	< 80	120- 1 29	< 80	130-139	80-89	140+	90+
25-29	< 90	< 60	< 120	< 80	120- 1 29	< 80	130-139	80-89	140+	90+
30-34	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
<mark>35-39</mark>	< 90	< 60	< 120	< 80	120- <mark>1</mark> 29	< 80	130-139	80-89	140+	90+
40-44	< 90	< 60	< 120	< 80	120- 1 29	< 80	130-139	80-89	140+	90+
45-49	< 90	< 60	< 120	< 80	120- <mark>1</mark> 29	< 80	130-139	80-89	140+	90+
50-54	< 90	< 60	< 120	< 80	120-129	< 80	130-139	80-89	140+	90+
55-59	< 90	< 60	< 120	< 80	120- <mark>1</mark> 29	< 80	130-139	80-89	140+	90+
60+	< 90	< 60	120	< 80	120-129	< 80	130-139	80-89	140+	90+

• Example 3: Movie List

Web Scraping Definition

- Process of Converting Currently Unstructured Data on Web to Structured Data in R
- Ideas:
 - Population Table to CSV
 - Blood Pressure Chart to Tibble
 - Movies to List in R
- Absolutely Crucial Skill for Modern Data Scientists

Web Scraping in R

• The rvest package

> library(rvest)

- Written by Hadley Wickham
- General Process:

Example 1

k ipedia.org /wiki/List_0	of_states_	and_territories_	of_the_Ur	nited_States_by	_populatio	n								\$	🧼 🏦	
Divisions & regions a	s defined	by U.S. Census	Bureau						R D	Elements	Console	Sources	Network		*	
Last col. shows large	r region w	hich contains er	ntity in col.	1						▶▼ <table cl<="" th=""><th>ass="wiki</th><th>table"><th>able></th><th>tablesorte</th><th>" style="t</th></th></table>	ass="wiki	table"> <th>able></th> <th>tablesorte</th> <th>" style="t</th>	able>	tablesorte	" style="t	
Population of states, territories,					s, division	is and regions				align: righ <caption< td=""><td>Edit</td><td>attribute</td><td></td><td>ries, divis</td><td>ions and r</td></caption<>	Edit	attribute		ries, divis	ions and r	
State/federal	Rank ≜	2019	Rank ≑	2010	Rank ≜	2000	Rank ≜	2000	و بالاس	<td>Dele</td> <td>as HTML ete element</td> <td></td> <td></td> <td></td>	Dele	as HTML ete element				
division/region	TRAINE V	population	THATTA V	population		population	Thank V	chang	alv Styles	Event Listeners	Сор	У	Þ	Cut eler	nent	
Massachusetts	15	6,892,503	14	6,547,629	13	6,349,097	43	3	Filter		Hide	element		Paste el	ement	
Sonnecticut	29	3,565,287	29	3,574,097	29	3,405,565	35	4	element	style {	Brea	Break on		Copy ou	Copy outerHTML	
New Hampshire	41	1,359,711	42	1,316,470	41	1,235,786	32	6	<pre>text- } .wikital</pre>	align: right;	Expand recursively		vely	Copy selector Copy JS path Copy styles		
• Maine	42	1,344,212	41	1,328,361	40	1,274,923	39	4	backg color	round-color: : _ #202122;	Scro	Scroll into view				
Rhode Island	44	1,059,361	43	1,052,567	43	1,048,319	49	(margi borde	n:⊧1em 0; r:⊧1px solid	Focus		Copy full XPath			
• Vermont	49	623,989	49	625,741	49	608,827	44	2	borde }	r-collapse: co	¹ Stor	e as global	variable	P	14	
New England	9	14,845,063	9	14,444,865	9	13,922,517	7	:	table {		Spe	ech	►	Siltor		
Mew York	4	19,453,561	3	19,378,102	3	18,976,457	46	2	font- }	size: 100%;				► background	-color	
🐘 Pennsylvania	5	12,801,989	6	12,702,379	6	12,281,054	41	3	table {		use	r agent sty	lesheet	∎ rgb(248,	249, 250)	
New Jersey	11	8,882,190	11	8,791,894	9	8,414,350	37	4	borde	ay: table; r—collapse: se	parate;			▶ border-bot ■ rgb(162,	tom-color 169, 177)	
Mid-Atlantic	4	41,137,740	4	40,872,375	4	39,671,861	8	:	box-s	izing: border-	box;			▶ border-bot	tom-style	

- Right click the table \rightarrow inspect
- Select element, right click \rightarrow copy XPath

Example 1: code

	State <chr></chr>	Rank_2019 <chr></chr>	Pop_2019 <chr></chr>	Pop_2010 <chr></chr>	Rank_2010 <chr></chr>	Pop_2000 <chr></chr>	Rank_2000 <chr></chr>	Change <pre><chr></chr></pre>
1	Massachusetts	15	6,892,503	14	6,547,629	13	6,349,097	43
2	Connecticut	29	3,565,287	29	3,574,097	29	3,405,565	35
3	New Hampshire	41	1,359,711	42	1,316,470	41	1,235,786	32
4	Maine	42	1,344,212	41	1,328,361	40	1,274,923	39
5	Rhode Island	44	1,059,361	43	1,052,567	43	1,048,319	49
6	Vermont	49	623,989	49	625,741	49	608,827	44

Add SelectorGadget

	ectorGadget	× 🌷 ۹			
Q /	ul 🖉 Shopping 🖽 News → Videos 🚡 Images 🗄 More	Settings Tools			
Abo	ut 15.900 results (0.29 seconds)				
chro Se May gen	me.google.com > webstore > detail > selectorgadget - ectorGadget - Google Chrome 18, 2020 - Selector Gadget is an open source Chrome Extensi n that make eration and discovery on complicated sites a breeze.	es CSS selector		0	s c u
Sele com	ectorGadget: point and click CSS selectors ctorGadget is an open source tool that makes CSS selector generation and plicated sites a breeze. Just install the Chrome Extension or	discovery on			M th
			_		
ome >	Extensions > SelectorGadget				
ome >	Extensions > SelectorGadget SelectorGadget Offered by selectorgadget com		Add to Cf	nrome	

Example 2

- Step 4: Identifying CSS Selector
 - Go to Web Page

https://www.imdb.com/search/title/?count=100&release_date=2019,2019&title_type=feature

Choose SelectorGadget

• Locate This Box on the bottom

Central Centre Solution					
No valid path found.	Clear	Toggle Position	XPath	Help	X
			_		

Step1: Select things you want to scrap

Example 2: code

[1] [2]	"21 Bridges" "Knives Out"
[3]	"Joker"
[4]	"Avengers: Endgame"
[5]	"I See You"
[6]	"Once Upon a Time in Hollywood"
[7]	"The Peanut Butter Falcon"
[8]	"Parasite"
[9]	"Ready or Not"
[10]	"Jojo Rabbit"
[11]	"The Gentlemen"
[12]	"Doctor Sleep"
[13]	"1BR"
[14]	"The Lighthouse"
[15]	"Jumanji: The Next Level"
[16]	"Bombshell"
[17]	"1917"
[18]	"Get Duked!"

Tutorial 6

- Step 1: Open Tutorial
- Step 2: Ensure You Have the Following R Packages Installed
 - tidyverse
 - rvest
 - devtools
 - noncensus (Install from Github)
- Step 3: Knit and Run
- Step 4: Read the Introduction

- Step 1: Wikipedia Violent Crimes
- Step 2: Locate the Table

Crime rates pe	Crime rates per 100,000 people per year							
				Viol	lent crime			
State ♦	City ¢	Population ≑	Total \$	Murder and Nonnegligent	Rape ¹ ≎	Robbery \$	Aggravated assault ◆	
Alabama	Mobile ³	248431	740.25	20.13	57.16	177.11	485.85	
Alaska	Anchorage	296188	1203.29	9.12	132.01	262.67	799.49	
Arizona	Chandler	249355	259.47	2.01	52.13	56.95	148.38	
Arizona	Gilbert	242090	85.51	2.07	16.11	21.07	46.26	
Arizona	Glendale	249273	488.22	4.81	38.91	192.96	251.53	
Arizona	Mesa	492268	415.83	4.67	51.19	92.23	267.74	
Arizona	Phoenix	1644177	760.93	9.55	69.46	200.28	481.64	
Arizona	Scottsdale	251840	157.24	1.99	40.90	39.71	74.65	
Arizona	Tucson	532323	801.77	8.64	93.55	268.82	430.75	
California	Anaheim	353400	354.56	2.83	32.54	135.82	183.36	
California	Bakersfield	381154	479.33	10.76	24.14	197.56	246.88	

- Step 3: What Do You Expect to Be a Problem in the Data?
- Step 4: Run Chunk 1
 - Is This What You Expected?
 - What New Problems Arise?
- Step 5: Run Chunk 2
 - Select Wanted Information
 - Remove 1st Row Subgroups
 - Rename Variables

- Step 6: Run Chunk 3
 - Converting Variable Types
 - as.numeric()
 - as.character()
 - as.date()
 - as.integer()
 - All Numeric Variables are Character Because of First Row
- Step 7: Run Chunk 4
 - City Variable Has Problems
 - Why Do We Care?

- Step 8: Run Chunk 5
 - String Functions Used
 - str_replace_all()
 - str_replace()
 - Conditional Mutation
 - ifelse()
- Step 9: Base Knit

Part 2: Geographical Locations of US Cities

- Step 1: What Additional Information Would We Need to Plot Crime Information on a Map?
- Step 2: Run Chunk 1
 - What Info is Important?
 - What Do You Notice About the City Variable?
- Step 3: Run Chunk 2
 - Goal: Find the Average Latitude and Longitude for Each City and State

Part 2: Geographical Locations of US Cities

- Step 4: Run Chunk 3
 - Examine the Output
 - Notice Aaronsburg, PA

- Are We Ready to Merge?
 - #No
 - #WhyNot
- Step 5: Pinch Knit

Part 3: Linking State Names to State Abbreviations

- Step 1: Select Website Link
- Step 2: Examine the Table

Name	Abbreviation	Name	Abbreviation
Alabama	AL	Montana	MT
Alaska	AK	Nebraska	NE
Arizona	AZ	Nevada	NV
Arkansas	AR	New Hampshire	NH
California	CA	<u>New Jersey</u>	NJ
Colorado	СО	New Mexico	NM
Connecticut	СТ	New York	NY

 Step 3: What is the Issue with the Way this Information is Presented and How Does this Pose a Threat to Our Existence?

Part 3: Linking State Names to State Abbreviations

- Step 4: Run Chunk 1
 - Did You Get What You Expected?
 - How Should We Fix This Data?
- Step 5: Run Chunk 2
 - Stacking Datasets
 - Horizontally

- Vertically > rbind(x,y)
- Step 6: Knitting Streak

Intermission

- Final 3 Data Frames From Last Tutorial Should All Be Saved to CSV's on PC
 - FINAL_VIOLENT.CSV
 - FINAL_ZIP.CSV
 - FINAL_STATE_ABBREV.CSV
- Think About What Other City Information Could Potentially Be a Factor in Violent Crimes
- Think About What Other City Information Could Potentially Be Influenced by the Prevalence of Violent Crimes

Tutorial 7 Introduction

- Step 1: Open Tutorial 7
- Step 2: Ensure You Have the Following R Packages Installed
 - tidyverse
 - rvest
- Step 3: Switch Knitter
- Step 4: Read the Introduction

Part 1: Connection to Population Change and Density

• Step 1: Select the Link and Observe the Following Table

2019 rank ^{\$}	City ÷	State ^[c] ♦	2019 estimate ^{\$}	2010 Census [‡]	Change +	2016 land	area 🗢	2016 populati	on density 🗢	Location +
1	New York ^[d]	New York	8,336,817	8,175,133	+1.98%	301.5 sq mi	780.9 km ²	28,317/sq mi	10,933/km ²	🔍 40.6635°N 73.9387°W
2	Los Angeles	🙇 California	3,979,576	3,792,621	+4.93%	468.7 sq mi	1,213.9 km ²	8,484/sq mi	3,276/km ²	🚑 34.0194°N 118.4108°W
3	Chicago	🔹 Illinois	2,693,976	2,695,598	-0.06%	227.3 sq mi	588.7 km ²	11,900/sq mi	4,600/km ²	ؼ 41.8376°N 87.6818°W
4	Houston ^[3]	Texas	2,320,268	2,100,263	+10.48%	637.5 sq mi	1,651.1 km ²	3,613/sq mi	1,395/km ²	ؼ 29.7866°N 95.3909°W
5	Phoenix	🎇 Arizona	1,680,992	1,445,632	+16.28%	517.6 sq mi	1,340.6 km ²	3,120/sq mi	1,200/km ²	🚇 33.5722°N 112.0901°W
6	Philadelphia ^[e]	Pennsylvania	1,584,064	1,526,006	+3.80%	134.2 sq mi	347.6 km ²	11,683/sq mi	4,511/km ²	ؼ 40.0094°N 75.1333°W
7	San Antonio	Texas	1,547,253	1,327,407	+16.56%	461.0 sq mi	1,194.0 km ²	3,238/sq mi	1,250/km ²	ؼ 29.4724°N 98.5251°W
8	San Diego	🙇 California	1,423,851	1,307,402	+8.91%	325.2 sq mi	842.3 km ²	4,325/sq mi	1,670/km ²	🚑 32.8153°N 117.1350°W
9	Dallas	Texas	1,343,573	1,197,816	+12.17%	340.9 sq mi	882.9 km ²	3,866/sq mi	1,493/km ²	🔍 32.7933°N 96.7665°W

- Step 2: Questions?
 - What is the Connection to Violent Crimes?
 - How is this Useful When Related to Violent Crimes?

Part 1: Connection to Population Change and Density

- Step 3: Run Chunk 1
 - What is required to convert the Pop_2019 to a numeric variable?
 - What is required to convert the Land to a numeric variable?
 - What is required to convert the Density to a numeric variable?
- Step 4: Run Chunk 2
 - Notice: ",|km2",",|/km2"

Part 1: Connection to Population Change and Density

- Step 5: Run Chunk 3
 - How to create a variable representing population change from 2016 to 2019?
 - How to create a variable representing population density in 2019?
 - How to clean the city name column?

- Step 1: Selector Gadget Website
 - Open Source
 - Chrome Extension Exists
 - Easy: Drag Link to Bookmark Bar as Webpage
 Explains

ជ

- Step 2: Observe the Article on 2018's Safest and Most Dangerous States
 - What info could be of use?
 - Do you agree identification?

- Step 3: Information of Interest
 - Safe vs Dangerous

1. Vermont	1. Mississippi
2. Maine	2. Louisiana
3. Minnesota	3. Oklahoma
4. Utah	4. Texas
5. New Hampshire	5. Florida
6. Connecticut	6. Arkansas
7. Rhode Island	7. Alabama
8. Hawaii	8. Missouri
9. Massachusetts	9. Alaska
10. Washington	10. South Carolina

 Goal: Scrape this Information into Vectors in R to Create a Table

- Step 4: Identifying CSS Selector
 - Go to Web Page

(i) https://www.securitysales.com/fire-intrusion/2018-safest-most-dangerous-states-us/

 Choose SelectorGadget in Bookmark Tab

☆

Locate This Box

No valid path found.

Clear Toggle Position XPath

Help

Х

- Step 4: Continued
 - Find Content You Want

- Step 4: Continued
 - Find Content You Don't Want

- Locate This Box

to "These are the 2018 Safest and Most Danserous States in the U.S.

- Step 4: Continued
 - Locate This Box

#articleContentWrapper li

- Copy CSS Selector: "#articleContentWrapper li"
- Step 5: Run Chunk 1

read_html() %>%
html_nodes(css="#articleContentWrapper li") %>%
html_text()

Clear (20)

Toggle Position

XPath

Help

- Step 6: Run Chunk 2
 - What About the Other States?
- Step 7: Walk-off Knit